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Finite-Element Analysis of
Dielectric-Loaded Waveguides

MITSUO HANO

Abstract —A finite-element analysis in which nonphysical spurious solu- '

tions do not appear has been established to solve the electromagnetic field
problem of the closed waveguide filled with various anisotropic media. This
method is based on the approximate extremization of a functional, whose
Euler equation is the three-component curlcurl equation derived from the
Maxwell equations, with a new conforming element. Specific examples are
given and the results are compared with those obtained by exact solutions
and longitudinal two-component finite-element solutions. Very close agree-
ment was found and all nonzero eigenvalues have been proved to have
one-to-one correspondence to the propagating modes of the waveguide.

1. INTRODUCTION

S A RESULT of the broad variety of practical appli-

cations of the closed waveguide filled with several
kinds of media in microwave and optical frequency re-
gions, the development of methods to solve the associated
electromagnetic field problems has attracted the attention
of many researchers. The finite-clement method, which
enables one to compute accurately the mode spectrum of a
waveguide with arbitrary cross section, has been widely
used [1]-[7]. However, the two-component finite-clement
solutions have been known to include nonphysical spurious
modes [2], [3]. ‘

Konrad has derived a three-component vector varia-
tional expression for electromagnetic field problems [5],
and has selected a family of functions, as a trial solution, in
which each component of the vector field is continuous
along all interelement boundaries [6}. . Therefore, the
material parameters are restricted; either permittivity or
permeability should be constant in all regions. Spurious
solutions have likewise appeared as the result of this
numerical calculation.

We investigated his three-component formulation for the
condition required of trial solutions, and have concluded
that the necessary and sufficient requirement for the trial
solution is not so strict as the one in [6].

In this paper, the functional describing the behavior of
the electromagnetic fields in anisotropic waveguides is in-
troduced and the set of trial functions perfectly satisfying
the boundary conditions required in the functional, a so-
called conforming element, is derived. This approach has
improved the following two serious problems which are
inevitable in the previous two-component and three-
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component finite-element methods:

1) occurrence of the nonphysical spurious solution,
2) restriction on the discontinuity of either permittivity
or permeability of the media.

II. VARIATIONAL FORMULATION OF THE
MAXWELL EQUATIONS

Consider an arbitrarily shaped metal waveguide im-
mersed in several anisotropic and lossless dielectrics as
shown in Fig. 1. This waveguide is assumed to be uniform
along its longitudinal z axis. ¢ and j denote the tensor
permittivity and the tensor permeability without off-diag-
onal elements, respectively, and they are assumed to be
constant in each region.

Maxwell curl equations for time-harmonic fields are

V X H= jwéE (1)
VXE=— jojH (2)
where the vectors E and H are the dielectric- and the

magnetic-field intensity, respectively, and « is an angular
frequency. From (1) and (2), we construct

E=—(j/w)¢e'vXH (3)
H=(j/e)i™'V XE. @
By taking the curl of (3) and (4), and then substituting into

(1) and (2), the following common curlcurl equation is
obtained:

VXp UV XV)-wG¥V=0

)
where V denotes either E or H, and p and § are the
material tensors as shown in Table 1.

At the interface of the region, an appropriate boundary
condition must be satisfied by the field vectors. The inter-
face continuity between two contiguous media (say the th
and sth) requires that

nX (V" =V)=0 (6)
(/@)nx(priw xVr=plw x¥)=0  (7)

alonig their common boundary, where n is a surface normal
unit vector. On the other hand, for the electric wall and the
magnetic wall, the boundary condition of the electromag-
netic field requires either

nXV=0 (8)
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Fig. 1. Configuration of the metal waveguide.

TABLEI
RELATIONS BETWEEN ( /7, ) AND MATERIAL
TENSORS AGAINST V.

v

E
H

o ||
= ime Ly

or
(j/@)nx(p'v x ) =0. 9

The electromagnetic problem defined by (5) with the
forced boundary conditions of (6) and (8), is expressed by
dF=0 (10)

in which F is the functional whose variation yields (5) as a

Euler equation and (7) and (9) as natural boundary condi-
tions. The functional F is determined to have the form

F=%—/{(V XV*)p~ (v XV)=w’V*qV}dv (11)

where the asterisk denotes the complex cbnjugate.
In this paper, traveling waves of the form
V=_(iV,+iV,+iV,)e (12)
are treated, where 8 is the propagation constant. By sub-
stituting (12) into (11), the particular functional is given by

+ B (aaV*foffV;)
+ B3 ( GV, - G2z
+B2( PV, P+ p V)
—wZ(qxxwwyyWyP+q”uc|2)}ds 13)

The surface integral in (13) is to be evaluated over the cross
section of the waveguide. ‘

I11. FI&ITE-ELEMENT METHOD

The selection of a family of trial solutions for the
Rayleigh—Ritz technique is facilitated if the cross section
of the waveguide is represented by a series of finite ele-
ments. If we consider the subdomain as one region, the
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Fig. 2. Rectangﬁlar element.

trial function is sufficient to satisfy the admissibility re-
quirement presented by the previous section.

The vector n X ¥V on the interface of the contiguous
regions can be separated into two components: i.., ¥, is a
longitudinal component and V; is a tangential component
in the x—y plane. The trial solutions are formed by
approximating v, as a bilinear form of x and y within
each element and v, and v, as a linear function of x or y.
Within each element, the value of v, is interpolated by the
vertex values of ¥V, and those of v, and v, by the side
values of V, and V), respectively, on the element boundary.
Fig. 2 111ustrates a rectangular element of which side lines
are held parallel to the coordinate axes. The eight nodal
points described in the element consist of the four corner
points (corresponding to unknown values of V) and four
side points (correspondmg to unknown values of V, and
V)

Usmg matrix notation, the approx1mate vector func-
tional form of v is expressed as

v={u, v, v, } (14)
where 1
0= (¥} [e.]
b= {Vy}T[(Py] (15)
o.={V.} [e]
and
‘{mT Va V)
Tz{ y1 y2} (16)
{V} ={Va Vo2 Vi3 Vou }
[9.]" =14 4]
[o,]" =14 &) (17)
(917 =616 616 L& 5]
§i=(x,—x)/h,, y={(x—x)/h,
£1=Ey2—y;;hy, §=§y-y1))?hy} (18)

and T denotes transverse. Equation (14) can be rewritten as -

v={V}7[@] (19)
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where
(= (Y {m} (r)7) (20)
» 0 O
[@]=|0 ¢ O (21)
0 0 ¢

and [0] is a zero matrix.
The partial derivatives of [¢, [, [¢,], and [¢,] of (17) with
respect to x and y are given by

Sled=[Bllwml  Elel=[4]ln]
3 2 (22)
wlel=l4llel.  Folel=[8ll]
where
_1f-1 N
[Bx]—hy_ 1], [AV]_hx[ 1]
. [-1 0 X -1 0
1l 0 -1 _11 1 0
[Az]_ hx 1 ol [Bz]_ hy 0 -1
L 0 1 0 1
(23)
and
[oo]=11]. (24)
From (22), (23), and (24), the v X v is derived as follows:
v xo={V}"[s][¥] (25)
where
_0 _JIBI _Bx
[s1=|81 0 4, (26)
B, -4, 0
(¢, 0 ©
[¥]=]0 o O (27)
_0 0 o

and [7] is a unit matrix.

On the other hand, from the commutativity of the dif-
ferential operators d/dx and d/dy, the following relation
is obtained:

[B.1[4,] =[4.1[B.]. (28)

Using the relation of (28), it is derived that the rank of
the 8 X5 matrix [.S] of (26) becomes four. This factor can
be explained as follows. From (19) and (25), the curl
operator V X is a linear operator from the space having
[®@] as a basis to the space having [¥] as a basis. Therefore,
the operator is a degenerate operator with a kernel, which

is the subspace satisfying the following relation:
v, + jBo,=0 (29)

where Vv, is a transverse operator and v, is a transverse
component of o. The nullity of the operator is equal to the
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dimension of v,, that is four. The matrix [S] is the matrix
representation of the curl operator on the space having (@]
as a basis.

Substituting (19) and (25) into (13) and performing the
indicated integrations, the contribution of the particular
element “e” to the total values of F is obtained. The
resulting expression with respect to the parameters gives

Fe=3({(VY[KNV}-? (¥ }T[M]{V}) (30)
in which

[K

[S—

= IST (11 ) sy 5T

Kll
Kn
K31

[M]=[[[@]a[@] dxdy

M, 0 0
0 0 M,

K12
K22
K32

Kl3
Ky
K33

(31)

I

(32)

and
[Ky] =BZP);1[Q1]+P221[Q4]
[Kp]=8%p5 Q.1+ 2" [05]
[K33]=Px_xl[Q6]+Py_yl[Q7]
[Ki]= [K21]T =—p.'[Qs]
[Kxn]= [Kaz]T = — jBpe Q5]
[Kys]=[Kqy]T=- 8P Q0]

[My;]=q,..[0:]
[M22]=qyy[Q2]
[M;]=4q,.[0;]

where t denotes the complex conjugate and transverse, and
the matrices [Q,] (i =1 ~10) are given in the Appendix. By
applying the Silvester’s inequality to (31), the rank of [K]
will become equal to that of [S].

Summing the contribution of all elements over the cross
section of the waveguide yields

(33)

(34)

F=)F°
=3 (7Y IRIP ) - 7Y 1Y) (39)
where
[K1=XTIK] (36)
[#]=1L[M] (37)

where {¥} is an ordered array of the three-component
nodal variables. The matrices [K] and [ M] are an adjoint
matrix. Hence, the variation of F in (35) gives the follow-
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Fig. 3. Cross section of half dielectric-loaded metal waveguide; €, = ¢,
1= po, €2 = 4€q, fin = fho.
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Fig. 4. Dispersion characteristics from two-component finite-element
analysis.

ing algebraic eigenvalue problem:

[R1(7) - [31(7} =0. (38)
The matrix [ K | has components proportional to the 8°, 8%,
and B2. The solution of this eigenvalue problem will pro-
vide the required results on the angular frequency of
various modes on a particular waveguide. From the anal-
ogy between the space of the element and the space of the
cross section of the waveguide, the rank of [K] is equal to
N, +N,, where N, and N, are the number of unknown
values of {V,} and {V}, respectively. Therefore, the alge-
braic system of (38) has N, zero eigenvalues where N, is
the number of unknown values of {¥,}. Other field compo-
nents can be derived from the eigenvector of (38) by (3) or
4).

IV. EXAMPLES AND CONSIDERATIONS

To demonstrate the excellent quality and the accuracy of
the finite-element analysis of the previous section, the
solutions for sample problems are given and are compared
with the conventional two-component finite-element solu-
tions [2], [3] due to insufficient data of the three-compo-
nent one [6]. In our program, all the eigenvalues of (38) are
obtained. ,

First, the problem consisting of a rectangular metal
waveguide half-filled with dielectric, as shown in Fig. 3, is
treated. The propagation modes in this waveguide are
classified into LSM, LSE, and TE modes, as is well known.
Fig. 4 shows the dispersion characteristics obtained from
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Fig. 5. Comparison of exact solution and present three-component
finite-element analysis results.

Fig. 6. Plots of field intensity of LSM;; mode for (a) E- and (b)
H-presentation at BH =5.0.

the two-component finite-element analysis. In Fig. 4, the
occurrence of the spurious modes and the difficulties at
B/ky,=1 can be found. Fig. 5 shows the dispersion char-
acteristics obtained from the present finite-element analysis
for the E-formulation and from the exact solutions. On
comparing the results of Fig. 4, the spurious modes have
not occurred at all in Fig. 5. And then, it is confirmed from
the numerical experiment that the algebraic system of (38)
has the implicit zero eigenvalues, of which the number is
equal to that of the longitudinal nodal points. All nonzero
eigenvalues were found to have one-to-one correspondence
to the propagation modes from its field distribution.
Agreement between the finite-element solutions and the
exact solutions is excellent. Fig. 6 shows the field intensity
configuration of the LSM,; mode taken at 8H = 5.0. These
field configurations are almost identical with those ob-
tained by the exact solution so that the values of H, over
all cross sections of the waveguide are equal to zero.
Second, a problem consisting of a rectangular metal
waveguide with microstrip of finite thickness in the center,
as shown in Fig. 7, is treated. This waveguide geometry is
given in [2] and the spurious modes were shown to be
mixed with physical modes in the solution of the two-
component finite-element method. Fig. 8 shows the disper-
sion characteristics obtained from our method where the
spurious modes have not occurred at all and the number of
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Fig. 7. Half cross section of closed microstrip; @ = 2b = 2W = 4H.

—e—
o
oo’

131 /./,_./o’
121 o
o --0---  Daly
114 ._o-—g‘-_’_ .
cadl —s— Present analysis
~ 101 e
~
9 8 1 ] i 1
< 0.05 0.1 .i)..£5 (wH/c) 2
7.51 et
e
7.0 e
o
6.5 e
e
6.0 L
s5] o €/ €=
5.0 /. " Y | " 1 1 .
& 0.1 0.2 0.3 (oH/c)?
3.5 oo
Al
.,./"0’""
Y-l
3.0 ,0-40{"’");"
o
/0"
2.5 €/€= 4
<
J 1 1 I 1 1 1
0.1 © 0.2 03 04 0.5 0.6 (uuscy?

Fig. 8. Comparison of the two-component and present three-component

finite-clement analysis results.

the zero eigenvalues were confirmed to be equal to that of
the longitudinal nodal points, as well.

V. CONCLUSION

In this paper, the finite-element method for solving the
dielectric-loaded waveguide problems was presented in
which the nonphysical spurious solutions included in the
solution of the two-component finite-€lement method do
not appear. This program has a specific number of zero
eigenvalues. The element used in our formulation is re-
stricted to the rectangle, so that the arbitrary cross section
of the wavcguide must be divided into the small rectangu-
lar region.

Future problems in the present f1mte-element analysis
will be the formulation with the triangular element and the
treatment of needless zero eigenvalues.

APPENDIX
The [Q;] matrices in (33) and (34) are given by
[01]=[U] (A1)
[2.]=[U,] (A2)
(A3)

[Q3] = [ zz]
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[0.]1=[B,][UnllB] (A4)
[05]1=[4,][Un][4,]" (A5)
[Q6]=[B.1[U,][B.]" (A6)
[Q:]=[4.1[U,.][4.] (A7)
[s]=[B.1[Un][4,]" (A8)
[2:1=[1,][8.1" (A9)
[010] = [U,1[4,]" (A10)

where |
Ual- [ edled s =222 1] (aw
U,] =fyf2Lj2[¢y][¢y]dedy = h’°6hy [f ;] (A12)
‘ 4 2 2 1
CAR ROV VTR I ERER
1 2 2 4
(A13)
[Um ffx[%][%]dedy=hxh.y[1]. (A14)
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