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Abstract —A finite-element analysis in which nonphysical spurious solu-

tions do not appear has been established to solve the electromagnetic field

problem of the closed wavegnide filled with various anisotropic media. This

method is based on the approximate extremization of a functional, whose

Euler equation is the three-component cnrlcurl equation derived from the

Maxwell equations, with a new conforming element. Specific examples are

given and the resnfts are compared with those obtained by exact solutions
and Iongitmfimd two-component finite-element solutions. Very close agree-
ment was found and afl nonzero eigenvalues hiwe been proved to have

one-to-one correspondence to the propagating modes of the wavegnide.

1. INTRODUCTION

A S A RESULT of the broad variety of practical appli-

cations of the closed wavegtiide filled with several

kinds of media in microwave and optical frequency re-

gions, the development of methods to solve the associated

electromagnetic field problems has attracted the attention

of many researchers. The finite-element method, which

enables one to compute accurately the mode spectrum of a

waveguide with arbitrary cross section, has been widely

used [1]–[7]. However, the two-component finite-element

solutions have been known to include nonphysical spurious

modes [2], [3].

Konrad has derived a three-component vector varia-

tional expression for electromagnetic field problems [5],

and has selected a family of functions, as a trial solution, in

which each component of the vector field is continuous

along all interelement boundaries [6]. , Therefore, the

material parameters are restricted; either permittivity or

permeability should be constant in all regions. Spurious

solutions have likewise appeared as the result of this

numerical calculation.

We investigated his three-component formulation for the

condition required of trial solutions, and have concluded

that the necessary and sufficient requirement for the trial

solution is not so strict as the one in [6],

In this paper, the functional describing the behavior of,.
the electromagnetic fields in anisotropic waveguides is in-

troduced and the set of trial functions perfectly satisfying

the boundary conditions required in the functional, a so-

called conforming element, is derived. This approach has

improved the following two serious problems which are

inevitable in the previous two-component and three-
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component finite-element methods:

1) occurrence of the nonphysical spurious solution,

2) restriction on the discontinuity of either permittivity

or permeability of the media.

II. VARIATIONAL FORMULATION OF THE

MAXWELL EQUATIONS

Consider an arbitrarily shaped metal waveguide im-

mersed in several anisotropic and Iossless dielectrics as

shown in Fig. 1. This waveguide is assumed to be uniform

along its longitudinal z axis. ? and ~ denote the tensor

permittivity and the tensor permeability without off-diag-

onal elements, respectively, and they are assumed to be

constant in each region.

Maxwell curl equations for time-harmonic fields are

vXH=jdE (1)

vXE=–jcofiH (2)

where the vectors E and H are the dielectric- and the

magnetic-field intensity, respectively, and o is an angular

frequency. From (1) and (2), we construct

E= –(j/a){-lV XH (3)

H= (j/u)p-lv XE. (4)

By taking the curl of (3) and (4), and then substituting into

(1) and (2), the following common curlcurl equation is

obtained:

v Xp-yv x v)–arz~v=o (5)

where V denotes either E- or H, and j and Q are the

material tensors as shown in Table I.

At the interface of the region, an appropriate boundlary

condition must be satisfied by the field vectors. The inter-

face continuity between two contiguous media (say the rth

and s th) requires that

nx(v”–v”)=o (6)

(j/~) nx(fF1v xV’-j;lvxv’)=o (7)

along their common boundary, where n is a surface normal

unit vector. On the other hand, for .$e electric wall and the

magnetic wall, the boundary condltlon of the electromag-

netic field requires either

nxv=o (8)
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Perfect conductor

Fig. 1. Configuration of the metal waveguide.

TABLE I

RELATIONS BETWEEN (j, ~) AND MATERIAL

TENSORSAGAINST V.

H

v Ge

E ;:

H :;

or

(j/@)nx(F1v x J“) =0. (9)

The electromagnetic problem defined by (5) with the

forced boundary conditions of (6) and (8), is expressed by

8F=0 (lo)

in which F is the functional whose variation yields (5) as a

Euler equation and (7) and (9) as natural boundary condi-

tions. The functional F is determined to have the form

F=+~{(V XV*)”fl-l( VXV)-ti2V*” QV} du (11)

where the asterisk denotes the complex conjugate.

In this paper, traveling waves of the form

V= (ixVx+ iy~y + izVz) e-~fl’ (12)

are treated, where ~ is the propagation constant. By sub-

stituting (12) into (11), the particular functional is given by

+p2(px;ll~12 +Py;11L12)

)–@2(9xxlvx12+~yylvy12+qzzlvz12)~~. (13)

The surface integral in (13) is to be evaluated over the cross

section of the waveguide.

III. FINITE-ELEMENT METHOD

The selection of a family of trial solutions for the

Rayleigh–Ritz technique is facilitated if the cross section

of the waveguide is represented by a series of finite ele-

ments. If we consider the subdomain as one region, the
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~

vy2

t
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Fig. 2. Rectangular element.

trial function is sufficient to satisfy the admissibility re-

quirement presented by the previous section.

The vector n X V on the interface of the contiguous

regions can be separated into two components: i.e., V, is a

longitudinal component and ~ is a tangential component

in the x – y plane. The trial solutions are formed by

approximating u= as a bilinear form of x and y within

each element and OXand Uy as a linear function of x or y.

Within each element, the value of v= is interpolated by the

vertex values of V,, and those of UX and Uy by the side

values of VX and Vy, respectively, on the element boundary.

Fig. 2 illustrates a rectangular element of which side lines

are held parallel to the coordinate axes. The eight nodal

points described in the element consist of the four corner

points (corresponding to unknown values of ~) and four

side points (corresponding to unknown values of VX and

~).

Using matrix notation, the approximate vector func-

tional form of o is expressed as

V={ UX7.7YUZ} (14)

where

Ux= {Vx}q(px]

Uy={m%yl

1

(15)

02= {VZ}T[’BI

and

[ffxlT=[&f21

[9YIT=[L {21

/

(17)

[vzlT = [{ICI (,$2 {2’$, {2’$21

(,= (-%- x)/kx, {2= (x -x,)/hx

&=( Y2-Y)/~y, )$2= (y - .YJ/hy ’18)

and T denotes transverse. Equation (14) can be rewritten as

0= {V}qfl] (19)
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where

(20)

M
Cfxoo

[Q]= o 9, 0 (21)

o 0 %
and [0] is a zero matrix.

The partial derivatives of [TX], [qY], and [9,] of (17) with

respect to x and y are given by

+.1 = [%1[901! &[8J=[~y][%l

I

(22)

+[%l=[ffzl[%l> J% 1=[%1[9,18Y %

where

[%1=+[-:]>
Y

[AZ]=;
x

and

–1

o
1

0

[4=+-[-;]

!1‘Bz]=*[-i-1
(23)

[901 =[11. (24)

From (22), (23), and (24), the v x v is derived as follows:

VXV={V}T[S][*] (25)

where

“]”[’! :: T] ‘2’)

[1

00
[q?]= ? Ipx o (27)

o 0 90

and [1] is a unit matrix.

On the other hand, from the commutativity of the dif-

ferential operators d/ax and 8/ dy, the following relation

is obtained:

[B.][AY] ‘[ A.][BX]. (28)

Using the relation of (28), it is derived that the rank of

the 8 X 5 matrix [S] of (26) becomes four. This factor can

be explained as follows. From (19) and (25), the curl

operator v x is a linear operator from the space having

[@] as a basis to the space having [~] as a basis. Therefore,

the operator is a degenerate operator with a kernel, which

is the subspace satisfying the following relation:

vlvZ + jbor = O (29)

where vl is a transverse operator and q is a transverse

component of o. The nullity of the operator is equal to the
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dimension of v,, that is four. The matrix [S] is the matrix

representation of the curl operator on the space having [Q ]

as a basis.

Substituting (19) and (25) into (13) and performing the

indicated integrations, the contribution of the particular

element “e” to the total values of F is obtained. The

resulting expression with respect to the parameters gives

F’=*({v}f[K]{v} -J{v}~[M]{v}) (30)

in which

[KI=[SI*(JJITIP-’[ WWY)[SI’

[kf]=fJ[Q]@[Q]=dxdy

[

A411 o 0
~ o A’& o

0 0 M3J

and

[KJ=P2PY;’[QJ+J

[K221=P2ZZ;[Q21 +Z’[Q51

[KSSl=P.;’IQCl+ PY;’[Q~l

[K,zl= [K2JY= -P.; ’[Q81

[K,,] = [K,’]f= -jPp;~[Qg]

(31)

(32)

I (33)

[W1]=9..[Q1]

[~221=~yy[Q21

}

(34)

[JLs]=%z[Qs]

where ~ denotes the complex conjugate and transverse, and

the matrices [Qj] (i= 1- 10) are given in the Appendix. By

applying the Silvester’s inequality to (31), the rank of [K]

will become equal to that of [S].

Summing the contribution of all

section of the waveguide yields

elements over the cross

=;({P}’[k]{P}-J{ P} ’[ Aq{P}) (35)

where

[k]=~[K] (36)
e

[M]=z[il’1] (37)
e

where {~} is an ordered array of the three-component

nodal variables. The matrices [~] and [~] are an adjoint

matrix. Hence, the variation of F in (35) gives the follow-
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Fig. 3. Cross section ofhalfdielectric-loaded metal wavegnide; (l=(.,
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Fig. 4. Dispersion characteristics from two-component finite-element
anrdysis.

ing algebraic eigenvalue problem:

[R]{ P}-L7[M]{F}=0. (38)

The matrix [~] has components proportional to the ~“, /31,

and B 2. The solution of this eigenvalue problem will pro-

vide the required results on the angular frequency of

various modes on a particular waveguide. From the anal-

ogy between the space of the element and the space of the

cross section of the waveguide, the rank of [~] is equal to

NX + NY, where NX and NY are the number of unknown

values of { VX} and { VY}, respectively. Therefore, the alge-

braic system of (38) has N, zero eigenvalues where N, is

the number of unknown values of {V,}. Other field compo-

nents can be derived from the eigenvector of (38) by (3) or

(4).

IV. EXAMPLES AND CONSIDERATION~

To demonstrate the excellent quality and the accuracy of

the finite-element analysis of the previous section, the

solutions for sample problems are given and are Gompared

with the conventional two-component finite-element solu-

tions [2], [3] due to insufficient data of the three-compo-
nent one [6]. In our program, all the eigenvalues of (38) are

obtained.

First, the problem consisting of a rectangular metal

waveguide half-filled with dielectric, as shown in Fig. 3, is

treated. The propagation modes in this waveguide are

classified into LSM, LSE, and TE modes, as is well known.

Fig. 4 shows the dispersion characteristics obtained from

Fig. 5.

Fig. 6.

Comparison of exact solution and present three-component
finite-element analysisresults.

) E, j HZ

E.

Plots of field intensity of LSM1l mode for (a) E- and (b)
H-presentation at /lH = 5.0.

the two-component finite-element analysis. In Fig. 4, the

occurrence of the spurious modes and the difficulties at

/3/k0 = 1 can be found. Fig, 5 shows the dispersion char-

acteristics obtained from the present finite-element analysis

for the E-formulation and from the exact solutions. On

comparing the results of Fig. 4, the spurious modes have

not occurred at all in Fig. 5. And then, it is confirmed from

the numerical experiment that the algebraic system of (38)
has the implicit zero eigenvalues, of which the number is

equal to that of the longitudinal nodal points. All nonzero

eigenvalues were found to have one-to-one correspondence

to the propagation modes from its field distribution.

Agreement between the finite-element solutions and the

exact solutions is excellent. Fig. 6 shows the. field intensity

configuration of the LSMII mode taken at ~H = 5.0. These

field configurations are almost identical with those ob-

tained by the exact solution so that the values of HX over

all cross sections of the waveguide are equal to zero.

Second, a problem consisting of a rectangular metal

waveguide with rnicrostrip of finite thickness in the center,

as shown in Fig. 7, is treated. This waveguide geometry is

given in [2] and the spurious modes were shown to be
mixed with physical modes in the solution of the two-

component finite-element method. Fig. 8 shows the disper-

sion characteristics obtained from our method where the

spurious modes have not occurred at all and the number of
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the zero eigenvalues were confirmed to be equal to that of

the longitudinal nodal points, as well.

V. CONCLUSION

In this paper, the finite-element method for solving the

dielectric-loaded waveguide problems was presented in

which the nonphysical spurious solutions included in the

solution of the two-component finite-element method do

not appear. This program has a specific number of zero

eigenvalues. The element used in our formulation is re-

stricted to the rectangle, so that the arbitrary cross section

of the waveguide must be divided into the small rectangu-

lar region.

Future problems in the present finite-element analysis

will be the formulation with the triangular element and the

treatment of needless zero eigenvalues.

APPENDIX

The [Qj] matrices in (33) and (34) are given by

[Q,]= [Uxx] (Al)

[Q,] =[q,] “(A2)

[Q31= [%1 (A3)
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[Qd=[%][%][%]T (A4)

[Q,] =[~y][%o][~y]T (A5)

[QJ=[BZl[~y][BJT (A6)

[QT]=[4][%][4]T (A7)

[Qg]=[%l[%JIAy]T (A8)

[’Qg]= [CJJB.IT (A~) ,

[Qm]=[L][4]T (AlID)

where

[uxx]=J’’Jx*[qx] [qx]”dxdy=~[: ;] (All)
y~ x,

[qy] =Jy2Jx2[9y][9yl’dxdY= y[; ;] (Al~)
y~ xl

[1
4221

[qz]=Jy’Jx’[qz] [9z]’dxdy=# ; ; } ;
y~ xl

1224

(A13)

[um]=Jy2Jx2[qo] [qo]~dxdy=fixhy [l]. (A14)
y, xl
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